Forecasting benchmarks of long-term stock returns via machine learning

Author:

Kyriakou IoannisORCID,Mousavi Parastoo,Nielsen Jens Perch,Scholz Michael

Abstract

AbstractRecent advances in pension product development seem to favour alternatives to the risk free asset often used in the financial theory as a performance standard for measuring the value generated by an investment or a reference point for determining the value of a financial instrument. To this end, in this paper, we apply the simplest machine learning technique, namely, a fully nonparametric smoother with the covariates and the smoothing parameter chosen by cross-validation to forecast stock returns in excess of different benchmarks, including the short-term interest rate, long-term interest rate, earnings-by-price ratio, and the inflation. We find that, net-of-inflation, the combined earnings-by-price and long-short rate spread form our best-performing two-dimensional set of predictors for future annual stock returns. This is a crucial conclusion for actuarial applications that aim to provide real-income forecasts for pensioners.

Funder

The Institute and Faculty of Actuaries

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3