Abstract
AbstractMean-semivariance and minimum semivariance portfolios are a preferable alternative to mean-variance and minimum variance portfolios whenever the asset returns are not symmetrically distributed. However, similarly to other portfolios based on downside risk measures, they are particularly affected by parameter uncertainty because the estimates of the necessary inputs are less reliable than the estimates of the full covariance matrix. We address this problem by performing PCA using Minimum Average Partial on the downside correlation matrix in order to reduce the dimension of the problem and, with it, the estimation errors. We apply our strategy to various datasets and show that it greatly improves the performance of mean-semivariance optimization, largely closing the gap in out-of-sample performance with the strategies based on the covariance matrix.
Funder
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献