Online risk-averse submodular maximization

Author:

Soma TasukuORCID,Yoshida YuichiORCID

Abstract

AbstractWe present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given T i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequence of solutions that converges to a ($$1-1/e$$ 1 - 1 / e )-approximate solution with a convergence rate of $$O(T^{-1/4})$$ O ( T - 1 / 4 ) for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require $$\Omega (T)$$ Ω ( T ) space, our online algorithm only requires $$O(\sqrt{T})$$ O ( T ) space. We extend our online algorithm to portfolio optimization for monotone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Reference41 articles.

1. Anari, N., Pokutta, S., & Tech, G. et al. (2019). Structured robust submodular maximization: Offline and online algorithms. In AISTATS.

2. Bian, A. A., Mirzasoleiman, B., Buhmann, J. et al. (2017). Guaranteed non-convex optimization: Submodular maximization over continuous domains (pp. 111–120).

3. Buchbinder, N., & Feldman, M. (2018). Submodular functions maximization problems. In: Gonzalez, T. F. (Ed.), Handbook of approximation algorithms and metaheuristics (2nd ed., chap 42).

4. Calinescu, G., Chekuri, C., Pál, M., et al. (2011). Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6), 1740–1766.

5. Cardoso, A. R., & Xu, H. (2019). Risk-averse stochastic convex bandit. In AISTATS (pp. 39–47).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3