On two product form modifications for finite overflow systems

Author:

van Dijk NicoORCID,Schilstra Barteld

Abstract

AbstractOverflow mechanisms can be found in a variety of queueing models. This paper studies a simple and generic overflow system that allows the service times to be both job type and station dependent. This system does not exhibit a product form. To justify simple product form computations, two product form modifications are given, as by a so-called call packing principle and by a stop protocol. The provided proofs are self-contained and straightforward for the exponential case and of merit by itself. Next, it is numerically studied whether and when, or under which conditions, the modifications lead to a reasonable approximation of the blocking probability, if not an ordering. The numerical results indicate that call packing provides a rather accurate approximation when the overflow station is not heavily utilized. Moreover, when overflowed jobs have an equal or faster service rate, the approximation is consistently found to be pessimistic, which can be useful for practical purposes. The stop protocol, in contrast, appears to be less accurate for most natural situations. Nevertheless, for an extreme situation the order might change. In addition, for the stop protocol the product form is proven to be insensitive (i.e. to also apply for arbitrary non-exponential service times). For call packing, this numerically appears not to be the case, as of interest by itself. However, from a practical viewpoint the sensitivity seems light. The results are intriguing for both theoretical and practical further research.

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3