Extension of the Directed Search Domain algorithm for multi-objective optimization to higher dimensions

Author:

Yu BoxiORCID,Utyuzhnikov SergeyORCID

Abstract

AbstractThis paper addresses the problem of generating an evenly distributed set of Pareto solutions. It appears in real-life applications related to multi-objective optimization when it is important to represent the entire Pareto front with a minimal cost. There exist only a few algorithms which are able to tackle this problem in a general formulation. The Directed Search Domain (DSD) algorithm has proved to be efficient and quite universal. It has successfully been applied to different challengeable test cases. In this paper for the first time the DSD approach is systematically extended and applied to problems with higher dimensions. The modified algorithm does not have any formal limitation on the number of objective functions that is important for practical applications. The efficacy of the algorithm is demonstrated on a number of test cases.

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140(2), 249–265.

2. Chikumbo, O., Goodman, E., & Deb, K. (2012). Approximating a multi-dimensional Pareto front for a land use management problem: A modified MOEA with an epigenetic silencing metaphor. 2012 IEEE Congress on Evolutionary Computation (pp. 1–9). IEEE: Brisbane.

3. Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631–657.

4. Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 4(4), 560–601.

5. Deb, K., Mohan, M., & Mishra, S. (2005). Evaluating the $$\varepsilon $$-domination based multiobjective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 13(4), 501–525.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3