MRFE-CNN: multi-route feature extraction model for breast tumor segmentation in Mammograms using a convolutional neural network
-
Published:2022-05-26
Issue:
Volume:
Page:
-
ISSN:0254-5330
-
Container-title:Annals of Operations Research
-
language:en
-
Short-container-title:Ann Oper Res
Author:
Ranjbarzadeh Ramin, Tataei Sarshar Nazanin, Jafarzadeh Ghoushchi SaeidORCID, Saleh Esfahani Mohammad, Parhizkar Mahboub, Pourasad Yaghoub, Anari Shokofeh, Bendechache Malika
Funder
Science Foundation Ireland
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Reference77 articles.
1. Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: Advances, challenges and applications. BMC Bioinformatics, 20(11), 1–20 2. Aghamohammadi, A., Ranjbarzadeh, R., Naiemi, F., Mogharrebi, M., Dorosti, S., & Bendechache, M. (2021). TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach. Expert Systems with Applications, 183, 115406 3. Aleem, S., Kumar, T., Little, S., Bendechache, M., Brennan, R., & McGuinness, K. (2021). Random Data Augmentation based Enhancement: A Generalized Enhancement Approach for Medical Datasets 4. Ali, E., Caputo, A., Lawless, S., & Conlan, O. (2021). Where Should I Go? A Deep Learning Approach to Personalize Type-Based Facet Ranking for POI Suggestion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13080 LNCS: 207–215 5. Almutiry, O., Iqbal, K., Hussain, S., Mahmood, A., & Dhahri, H. (2021). Underwater images contrast enhancement and its challenges: a survey. Multimedia Tools and Applications, 2021, 1–26.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|