Abstract
AbstractFaced with dynamic and increasingly diversified public transport requirements, bus operators are urged to propose operational innovations to sustain their competitiveness. In particular, ordinary bus operations are heavily constrained by well-established route options, and it is challenging to accommodate dynamic passenger flows effectively and with a good level of resource utilization performance. Inspired by the philosophy of sharing economy, many of the available transport resources on the road, such as minibuses and private vehicles, can offer opportunities for improvement if they can be effectively incorporated and exploited. In this regard, this paper proposes a metric learning-based prediction algorithm which can effectively capture the demand pattern and designs a route planning optimizer to help bus operators effectively deploy fixed routing and cooperative buses with traffic dynamics. Through extensive numerical studies, the performance of our proposed metric learning-based Generative Adversarial Network (GAN) prediction model outperforms existing ways. The effectiveness and robustness of the prediction-supported routing planner are well demonstrated for a real-time case. Further, managerial insights with regard to travel time, bus fleet size, and customer service levels are revealed by various sensitivity analysis.
Funder
Shenzhen Science and Technology Innovation Commission
National Natural Science Foundation of China
Pearl River S and T Nova Program of Guangzhou
Hylink Digital Solutions Co., Ltd.
University of Liverpool
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Reference43 articles.
1. Ai, Y., Li, Z., Gan, M., Zhang, Y., Yu, D., Chen, W., & Ju, Y. (2019). A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Computing and Applications, 31(5), 1665–1677.
2. Aranganayagi, S., & Thangavel, K. (2007). Clustering categorical data using silhouette coefficient as a relocating measure. In International conference on computational intelligence and multimedia applications (ICCIMA 2007)
3. Banerjee, N., Morton, A., & Akartunalı, K. (2020). Passenger demand forecasting in scheduled transportation. European Journal of Operational Research, 286(3), 797–810.
4. Bholowalia, P., & Kumar, A. (2014). EBK-means: A clustering technique based on elbow method and k-means in WSN. International Journal of Computer Applications, 105(9).
5. Borndörfer, R., Grötschel, M., & Pfetsch, M. E. (2007). A column-generation approach to line planning in public transport. Transportation Science, 41(1), 123–132.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献