A data-driven system for cooperative-bus route planning based on generative adversarial network and metric learning

Author:

Wang Jiguang,Zhang Yilun,Xing Xinjie,Zhan Yuanzhu,Chan Wai Kin VictorORCID,Tiwari Sunil

Abstract

AbstractFaced with dynamic and increasingly diversified public transport requirements, bus operators are urged to propose operational innovations to sustain their competitiveness. In particular, ordinary bus operations are heavily constrained by well-established route options, and it is challenging to accommodate dynamic passenger flows effectively and with a good level of resource utilization performance. Inspired by the philosophy of sharing economy, many of the available transport resources on the road, such as minibuses and private vehicles, can offer opportunities for improvement if they can be effectively incorporated and exploited. In this regard, this paper proposes a metric learning-based prediction algorithm which can effectively capture the demand pattern and designs a route planning optimizer to help bus operators effectively deploy fixed routing and cooperative buses with traffic dynamics. Through extensive numerical studies, the performance of our proposed metric learning-based Generative Adversarial Network (GAN) prediction model outperforms existing ways. The effectiveness and robustness of the prediction-supported routing planner are well demonstrated for a real-time case. Further, managerial insights with regard to travel time, bus fleet size, and customer service levels are revealed by various sensitivity analysis.

Funder

Shenzhen Science and Technology Innovation Commission

National Natural Science Foundation of China

Pearl River S and T Nova Program of Guangzhou

Hylink Digital Solutions Co., Ltd.

University of Liverpool

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3