Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. 214–223.
2. Bang, S.-J., Wang, Y., & Yang, Y. (2020). Phased-lstm based predictive model for longitudinal ehr data with missing values, Tech. Rep. https://www.cs.cmu.edu/~epxing
3. Barandela, R., Valdovinos, R. M., Sánchez, J. S., & Ferri, F. J. (2004). The imbalanced training sample problem: Under or over sampling? 806–814.
4. Barua, S., Islam, M. M., Yao, X., & Murase, K. (2012). MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, 26(2), 405–425.
5. Bennin, K. E., Keung, J., Phannachitta, P., Monden, A., & Mensah, S. (2017). Mahakil: Diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction. IEEE Transactions on Software Engineering, 44(6), 534–550.