1. Bjørner, N., & Phan, A. D. (2014).
$$\nu $$
ν
Z-Maximal satisfaction with Z3. In Proceedings of International Symposium on Symbolic Computation in Software Science (SCSS).
2. Brito, S. S., Fonseca, G. H. G., Toffolo, T. A. M., Santos, H. G., & Souza, M. J. F. (2012). A SA-ILS approach for the high school timetabling problem. Electronic Notes in Discrete Mathematics, 39, 169–176.
3. De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems (pp. 337–340). Springer.
4. Demirović, E., & Musliu, N. (2014). Modeling high school timetabling as partialweighted maxsat. LaSh 2014: The 4th Workshop on Logic and Search (a SAT/ICLP workshop at FLoC 2014).
5. Demirović, E., & Musliu, N. (2014). Solving high school timetabling with satisfiability modulo theories. In E. Ozcan, E. K. Burke & B. McCollum (Eds.), Proceedings of the 10th International Conference of the Practice and Theory of Automated Timetabling (pp. 142–166).