Author:
Ehrgott Matthias,Güler Çiğdem,Hamacher Horst W.,Shao Lizhen
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Reference215 articles.
1. Agmon, S. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 382–392.
2. Ahuja, R., & Hamacher, H. (2004). A network flow algorithm to minimize beam-on-time for unconstrained multileaf collimator problems in cancer radiation therapy. Networks, 45(1), 36–41.
3. Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: theory, algorithms and applications. New York: Prentice-Hall.
4. Alber, M., & Nüsslin, F. (2001). A representation of an NTCP function for local complication mechanisms. Physics in Medicine and Biology, 46, 439–447.
5. Alber, M., & Reemtsen, R. (2007). Intensity modulated radiation therapy planning by use of a barrier-penalty multiplier method. Optimization Methods and Software, 22, 391–411.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献