1. Haussler, D., Kearns, M., Seung, H.S., Tishby, N.: Rigorous Learning Curve Bounds from Statistical Mechanics. In: Proc. 7th ACM Workshop on Comp. Learning Theory (1994)
2. John, G., Langley, P.: Static versus dynamic sampling for data mining. In: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 367–370 (1996)
3. Meek, C., Theisson, B., Heckerman, D.: The learning-curve sampling method applied to model- based clustering. The Journal of Machine Learning Research (2002)
4. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, pp. 23–32 (1999)
5. Elomaa, T., Kaariainen, M.: Progressive rademacher sampling. In: Proc. 18th national conference on Artificial intelligence, Edmonton, Alberta, Canada, pp. 140–145 (2002)