Author:
Durán Antonio J.,Pérez Mario,Varona Juan L.
Abstract
AbstractWe develop a constructive method for computing explicitly multivariate Bessel expansions of the type $$\begin{aligned} \sum _{m\ge 1} \alpha _m \prod _{i=1}^k \frac{J_{\mu _i}(\zeta _m x_i)}{(\zeta _m x_i)^{\mu _i}}, \end{aligned}$$
∑
m
≥
1
α
m
∏
i
=
1
k
J
μ
i
(
ζ
m
x
i
)
(
ζ
m
x
i
)
μ
i
,
assuming that for a particular value $$\eta $$
η
a closed expression for the single-variable Bessel expansion $$\begin{aligned} \sum _{m\ge 1}\alpha _m \frac{J_{\eta }(\zeta _m x)}{(\zeta _m x)^\eta } \end{aligned}$$
∑
m
≥
1
α
m
J
η
(
ζ
m
x
)
(
ζ
m
x
)
η
as a power series of $$x^{2j}$$
x
2
j
, $$j\in \mathbb {N}$$
j
∈
N
, is known. Using the method we compute in a closed form a bunch of examples of multivariate Bessel expansions.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other formulas. Chapman and Hall/CRC, New York (2008)
2. Cholewinski, F.M.: The Finite Calculus Associated with Bessel Functions. Contemporary Mathematics, vol. 75. American Mathematical Society, Providence (1988)
3. Ciaurri, Ó., Durán, A.J., Pérez, M., Varona, J.L.: Bernoulli–Dunkl and Apostol–Euler–Dunkl polynomials with applications to series involving zeros of Bessel functions. J. Approx. Theory 235, 20–45 (2018)
4. Dattoli, G., Giannessi, L., Mezi, L., Torre, A.: Theory of generalized Bessel functions. Nuovo Cimento B 11(105), 327–348 (1990)
5. Dilcher, K.: Bernoulli and Euler Polynomials. NIST Handbook of Mathematical Functions, pp. 587–599. U.S. Dept. Commerce, Washington (2010). http://dlmf.nist.gov/24