Abstract
AbstractWe prove an evaluation for the stuffle-regularised alternating multiple $$ t $$
t
value $$ t^{*,V}({\overline{1}},\ldots ,{\overline{1}}, 1, {\overline{1}},\ldots ,{\overline{1}}) $$
t
∗
,
V
(
1
¯
,
…
,
1
¯
,
1
,
1
¯
,
…
,
1
¯
)
in terms of $$ V $$
V
, the regularisation parameter, $$\log (2), \zeta (k) $$
log
(
2
)
,
ζ
(
k
)
and $$ \beta (k) $$
β
(
k
)
. This arises by evaluating the corresponding generating series using the Evans-Stanton/Ramanujan asymptotics of a zero-balanced hypergeometric function $$ {}_3F_2 $$
3
F
2
, and an evaluation established by Li in an alternative approach to Zagier’s evaluation of $$ \zeta (2,\ldots ,2, 3, 2,\ldots ,2) $$
ζ
(
2
,
…
,
2
,
3
,
2
,
…
,
2
)
. We end with some discussion and conjectures on possible motivic applications.
Funder
Max Planck Institute for Mathematics
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献