Author:
Ferreira Chelo,López José L.,Pérez Sinusía Ester
Abstract
AbstractWe obtain an asymptotic expansion of the hyperbolic umbilic catastrophe integral $$\Psi ^{(H)}(x,y,z):= \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\exp (i(s^3+t^3+zst$$
Ψ
(
H
)
(
x
,
y
,
z
)
:
=
∫
-
∞
∞
∫
-
∞
∞
exp
(
i
(
s
3
+
t
3
+
z
s
t
$$+yt+xs))\mathrm{{d}}s\,\mathrm{{d}}t$$
+
y
t
+
x
s
)
)
d
s
d
t
for large values of |x| and bounded values of |y| and |z|. The expansion is given in terms of Airy functions and inverse powers of x. There is only one Stokes ray at $$\arg x=\pi $$
arg
x
=
π
. We use the modified saddle point method introduced in (López et al. J Math Anal Appl 354(1):347–359, 2009). The accuracy and the asymptotic character of the approximations are illustrated with numerical experiments.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference29 articles.
1. Berry, M.V.: Attenuation and focusing of electromagnetic surface waves rounding gentle bends. J. Phys. A 8(8), 566 (1975)
2. Berry, M.V.: Waves and Thom’s theorem. Adv Phys. 25, 1–26 (1976)
3. Berry, M.V., Howls, C.J.: Stokes surfaces of diffraction catastrophes with codimension three. Nonlinearity 3(2), 281–291 (1990)
4. Berry, M.V., Howls, C.J.: Axial and focal-plane diffraction catastrophe integrals. J. Phys. A 43(37), 13 (2010)
5. Berry, M.V., Howls, C.J.: Integrals with coalescing saddles. In: NIST Handbook of Mathematical Functions, pp. 775–793, Chapter 36. Cambridge University Press, Cambridge (2010)