On matching and periodicity for $$(N,\alpha )$$-expansions

Author:

Kraaikamp Cor,Langeveld Niels

Abstract

AbstractRecently a new class of continued fraction algorithms, the $$(N,\alpha $$ ( N , α )-expansions, was introduced in Kraaikamp and Langeveld (J Math Anal Appl 454(1):106–126, 2017) for each $$N\in \mathbb {N}$$ N N , $$N\ge 2$$ N 2 and $$\alpha \in (0,\sqrt{N}-1]$$ α ( 0 , N - 1 ] . Each of these continued fraction algorithms has only finitely many possible digits. These $$(N,\alpha )$$ ( N , α ) -expansions ‘behave’ very different from many other (classical) continued fraction algorithms; see also Chen and Kraaikamp (Matching of orbits of certain n-expansions with a finite set of digits (2022). To appear in Tohoku Math. J arXiv:2209.08882), de Jonge and Kraaikamp (Integers 23:17, 2023), de Jonge et al. (Monatsh Math 198(1):79–119, 2022), Nakada (Tokyo J Math 4(2):399–426, 1981) for examples and results. In this paper we will show that when all digits in the digit set are co-prime with N, which occurs in specified intervals of the parameter space, something extraordinary happens. Rational numbers and certain quadratic irrationals will not have a periodic expansion. Furthermore, there are no matching intervals in these regions. This contrasts sharply with the regular continued fraction and more classical parameterised continued fraction algorithms, for which often matching is shown to hold for almost every parameter. On the other hand, for $$\alpha $$ α small enough, all rationals have an eventually periodic expansion with period 1. This happens for all $$\alpha $$ α when $$N=2$$ N = 2 . We also find infinitely many matching intervals for $$N=2$$ N = 2 , as well as rationals that are not contained in any matching interval.

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Reference19 articles.

1. Anselm, M., Weintraub, S.H.: A generalization of continued fractions. J. Number Theory 131(12), 2442–2460 (2011)

2. Beltz, E., Fokkink, R., Kraaikamp, C.: A note on binary quadratic forms with positive discriminant $$D\ne \square $$. Proc. Rom. Acad. Ser. A 16(1), 28–31 (2015)

3. Burger, E.B., Gell-Redman, J., Kravitz, R., Walton, D., Yates, N.: Shrinking the period lengths of continued fractions while still capturing convergents. J. Number Theory 128(1), 144–153 (2008)

4. Carminati, C., Isola, S., Tiozzo, G.: Continued fractions with $$SL(2, Z)$$-branches: combinatorics and entropy. Trans. Am. Math. Soc. 370(7), 4927–4973 (2018)

5. Chen, Y., Kraaikamp, C.: Matching of orbits of certain $$n$$-expansions with a finite set of digits (2022). To appear in Tohoku Math. J arXiv:2209.08882

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3