1. Carlitz, L.:
$$q$$
q
-Bernoulli numbers and polynomials. Duke Math. J. 15, 987–1000 (1948)
2. Carlitz, L.:
$$q$$
q
-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 76, 332–350 (1954)
3. Carlitz, L.: Expansions of
$$q$$
q
-Bernoulli numbers. Duke Math. J. 25, 355–364 (1958)
4. Do, Y., Lim, D.: On
$$(h, q)$$
(
h
,
q
)
-Daehee numbers and polynomials. Adv. Differ. Equ. 2015, 107 (2015).
https://doi.org/10.1186/s13662-015-0445-3
5. Dolgy, D.V., Kim, T., Rim, S.-H., Lee, S.H.: Symmetry identities for the generalized higher-order
$$q$$
q
-Bernoulli polynomials under
$$S_3$$
S
3
arising from
$$p$$
p
-adic Volkenborn integral on
$$\mathbb{Z}_p$$
Z
p
. Proc. Jangjeon Math. Soc. 17(4), 645–650 (2014)