1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)
2. Berkovich, A., Chan, H.H., Schlosser, M.J.: Wronskians of theta functions and series for $$1/\pi $$. Adv. Math. 338, 266–304 (2018)
3. Borwein, J.M., Borwein, P.B.: $$\pi $$ and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)
4. Chan, H.H., Chan, S.H., Liu, Z.G.: Domb’s numbers and Ramanujan–Sato type series for $$1/\pi $$. Adv. Math. 186, 396–410 (2004)
5. Chen, X., Chu, W.: $$q$$-Analogues of $$\pi $$-series by applying Carlitz inversions to q-Pfaff–Saalschütz theorem. Preprint (2021). arXiv:2102.12440v1