Abstract
AbstractFor integers k, n with k, $$n \geqslant 1$$
n
⩾
1
, the n-color weak Schur number$$W\hspace{-0.6mm}S_{k}(n)$$
W
S
k
(
n
)
is defined as the least integer N, such that for every n-coloring of the integer interval [1, N], there exists a monochromatic solution $$x_{1},\dots , x_{k}, x_{k+1}$$
x
1
,
⋯
,
x
k
,
x
k
+
1
in that interval to the equation: $$\begin{aligned} x_{1}+x_{2}+\dots +x_{k} =x_{k+1}, \end{aligned}$$
x
1
+
x
2
+
⋯
+
x
k
=
x
k
+
1
,
with $$x_{i} \ne x_{j}$$
x
i
≠
x
j
, when $$i\ne j.$$
i
≠
j
.
In this paper, we obtain the exact values of $$WS_{6}(2)=166$$
W
S
6
(
2
)
=
166
, $$WS_{7}(2)=253$$
W
S
7
(
2
)
=
253
, $$WS_{3}(3)=94$$
W
S
3
(
3
)
=
94
and $$WS_{4}(3)=259$$
W
S
4
(
3
)
=
259
and we show new lower bounds on n-color weak Schur number $$W\hspace{-0.6mm}S_{k}(n)$$
W
S
k
(
n
)
for $$n=2,3.$$
n
=
2
,
3
.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference22 articles.
1. Ahmed, T., Schaal, D.J.: On generalized Schur numbers. Exp. Math. 25, 213–218 (2015)
2. Baumert, L.D.: Sum-free sets. J.P.L. Res. Summary 36–10, 16–18 (1961)
3. Lecture Note Math;A Beutelspacher,1982
4. Blanchard, P.F., Harary, F., Reis, R.: Partitions into sum-free sets. Electron. J. Combin. Numbers Theory 6, 1–10 (2006)
5. Bornsztein, P.: On an extension of a theorem of Schur. Acta Arith. 101(4), 395–399 (2002)