Abstract
AbstractLet $$\overline{p}(n)$$
p
¯
(
n
)
denote the overpartition function. In this paper, we obtain an inequality for the sequence $$\Delta ^{2}\log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$
Δ
2
log
p
¯
(
n
-
1
)
/
(
n
-
1
)
α
n
-
1
which states that $$\begin{aligned}&\log \biggl (1+\frac{3\pi }{4n^{5/2}}-\frac{11+5\alpha }{n^{11/4}}\biggr )< \Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}\\&< \log \biggl (1+\frac{3\pi }{4n^{5/2}}\biggr ) \ \ \text {for}\ n \ge N(\alpha ), \end{aligned}$$
log
(
1
+
3
π
4
n
5
/
2
-
11
+
5
α
n
11
/
4
)
<
Δ
2
log
p
¯
(
n
-
1
)
/
(
n
-
1
)
α
n
-
1
<
log
(
1
+
3
π
4
n
5
/
2
)
for
n
≥
N
(
α
)
,
where $$\alpha $$
α
is a non-negative real number, $$N(\alpha )$$
N
(
α
)
is a positive integer depending on $$\alpha $$
α
, and $$\Delta $$
Δ
is the difference operator with respect to n. This inequality consequently implies $$\log $$
log
-convexity of $$\bigl \{\root n \of {\overline{p}(n)/n}\bigr \}_{n \ge 19}$$
{
p
¯
(
n
)
/
n
n
}
n
≥
19
and $$\bigl \{\root n \of {\overline{p}(n)}\bigr \}_{n \ge 4}$$
{
p
¯
(
n
)
n
}
n
≥
4
. Moreover, it also establishes the asymptotic growth of $$\Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$
Δ
2
log
p
¯
(
n
-
1
)
/
(
n
-
1
)
α
n
-
1
by showing $$\underset{n \rightarrow \infty }{\lim } \Delta ^{2} \log \ \root n \of {\overline{p}(n)/n^{\alpha }} = \dfrac{3 \pi }{4 n^{5/2}}.$$
lim
n
→
∞
Δ
2
log
p
¯
(
n
)
/
n
α
n
=
3
π
4
n
5
/
2
.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference13 articles.
1. Chen, W.Y.C.: Recent developments on log-concavity and q-log-concavity of combinatorial polynomials. In: 22nd International Conference on Formal Power Series and Algebraic Combinatorics $$($$FPSAC $$2010)$$, 2010.http://www.billchen.org/talks/2010-FPSAC.pdf
2. Chen, W.Y.C., Wang, L.X.W., Xie, G.Y.B.: Finite differences of the logarithm of the partition function. Math. Comput. 85, 825–847 (2016)
3. Chen, W.Y.C., Zheng, K.Y.: The $$\log $$-behavior of $$\root n \of {p(n)}$$ and $$\root n \of {p(n)/n}$$. Ramanujan J. 44, 281–299 (2017)
4. Corteel, S., Lovejoy, J.: Overpartitions. Trans. Am. Math. Soc. 356, 1623–1635 (2004)
5. DeSalvo, S., Pak, I.: Log-concavity of the partition function. Ramanujan J. 38(1), 61–73 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献