Abstract
AbstractWe produce an estimate for the K-Bessel function $$K_{r + i t}(y)$$
K
r
+
i
t
(
y
)
with positive, real argument y and of large complex order $$r+it$$
r
+
i
t
where r is bounded and $$t = y \sin \theta $$
t
=
y
sin
θ
for a fixed parameter $$0\le \theta \le \pi /2$$
0
≤
θ
≤
π
/
2
or $$t= y \cosh \mu $$
t
=
y
cosh
μ
for a fixed parameter $$\mu >0$$
μ
>
0
. In particular, we compute the dominant term of the asymptotic expansion of $$K_{r + i t}(y)$$
K
r
+
i
t
(
y
)
as $$y \rightarrow \infty $$
y
→
∞
. When t and y are close (or equal), we also give a uniform estimate. As an application of these estimates, we give bounds on the weight-zero (real-analytic) Eisenstein series $$E_0^{(j)}(z, r+it)$$
E
0
(
j
)
(
z
,
r
+
i
t
)
for each inequivalent cusp $$\kappa _j$$
κ
j
when $$1/2 \le r \le 3/2$$
1
/
2
≤
r
≤
3
/
2
.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference23 articles.
1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, DC (1964)
2. Assing, E.: On sup-norm bounds part II: $$GL(2)$$ Eisenstein series. Forum Math. 31(4), 971–1006 (2019)
3. Balogh, C.B.: Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, 1315–1323 (1967)
4. Blomer, V., Harcos, G., Maga, P., Milićević, D.: The sup-norm problem for $$GL(2)$$ over number fields. J. Eur. Math. Soc. (JEMS) 22(1), 1–53 (2020)
5. Booker, A.R., Strömbergsson, A., Then, H.: Bounds and algorithms for the K-Bessel function of imaginary order. LMS J. Comput. Math. 16, 78–108 (2013)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献