Real-Time Nonlinear Control Allocation Framework for Vehicles with Highly Nonlinear Effectors Subject to Saturation

Author:

Mancinelli AlessandroORCID,Remes Bart D. W.,De Croon Guido C. H. E.,Smeur Ewoud J. J.

Abstract

AbstractHybrid Unmanned Aerial Vehicles UAV are vehicles capable of take-off and landing vertically like helicopters while maintaining the long-range efficiency of fixed-wing aircraft. Unfortunately, due to their wing area, these vehicles are sensitive to wind gusts when hovering. One way to increase the hovering wind-rejection capabilities of hybrid UAV is through the addition of extra actuators capable of directing the thrust of the rotors. Nevertheless, the ability to control UAVs with many actuators is strictly related to how well the Control Allocation problem is solved. Generally, to reduce the problem complexity, conventional (CA) methods make use of linearized control effectiveness in order to optimize the inputs that achieve a certain control objective. We show that this simplification can lead to oscillations if it is applied to thrust vectoring vehicles, with pronounced non-linear actuator effectiveness. When large control objectives are requested or actuators saturate, the linearized effectiveness based CA methods tend to compute a solution far away from the initial actuator state, invalidating the linearization. A potential solution could be to impose limits on the solution domain of the linearized CA algorithm. However, this solution only reduces the oscillations at the expense of a lag in the vehicle acceleration response. To overcome this limitation, we present a fully nonlinear CA method, which uses an Sequential Quadratic Programming (SQP) algorithm to solve the CA problem. The method is tested and implemented on a single board computer that computes the actuator solution in real time onboard a dual axis tilting rotor quad-plane. Flight test experiments confirm the problem of severe oscillations in the linearized effectiveness CA algorithms and show how the only algorithm able to optimally solve the CA problem is the presented Nonlinear method.

Funder

EFRO

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3