Trading-Off Safety with Agility Using Deep Pose Error Estimation and Reinforcement Learning for Perception-Driven UAV Motion Planning

Author:

Kaymaz MehmetcanORCID,Ayzit Recep,Akgün Onur,Atik Kamil Canberk,Erdem Mustafa,Yalcin Baris,Cetin Gürkan,Ure Nazım Kemal

Abstract

AbstractNavigation and planning for unmanned aerial vehicles (UAVs) based on visual-inertial sensors has been a popular research area in recent years. However, most visual sensors are prone to high error rates when exposed to disturbances such as excessive brightness and blur, which can lead to catastrophic performance drops in perception and motion planning systems. This study proposes a novel framework to address the coupled perception-planning problem in high-risk environments. This achieved by developing algorithms that can automatically adjust the agility of the UAV maneuvers based on the predicted error rate of the pose estimation system. The fundamental idea behind our work is to demonstrate that highly agile maneuvers become infeasible to execute when visual measurements are noisy. Thus, agility should be traded-off with safety to enable efficient risk management. Our study focuses on navigating a quadcopter through a sequence of gates on an unknown map, and we rely on existing deep learning methods for visual gate-pose estimation. In addition, we develop an architecture for estimating the pose error under high disturbance visual inputs. We use the estimated pose errors to train a reinforcement learning agent to tune the parameters of the motion planning algorithm to safely navigate the environment while minimizing the track completion time. Simulation results demonstrate that our proposed approach yields significantly fewer crashes and higher track completion rates compared to approaches that do not utilize reinforcement learning.

Funder

Havelsan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3