On the Performance of the Model-Free Adaptive Control For A Novel Moving-Mass Controlled Flying Robot

Author:

Heydari MohsenORCID,Darvishpoor Shahin,Novinzadeh Alireza Basohbat,Roshanian Jafar

Abstract

AbstractIn this paper, the performance of Model-Free Adaptive Control (MFAC) has been investigated on a novel and specific moving-mass controlled (MMC) flying robot system. The novel one-degree-of-freedom (1 DOF) MMC flying robot test bed presented in this paper has highly nonlinear and slow dynamics with a variable center of gravity (CoG) and moment of inertia. This makes the control of this system a challenging problem. One of the solutions to this challenge is the use of data-driven control methods, in particular, MFAC. This controller uses a data-driven model to control the system using only input and output (I/O) data. This paper compares this data-driven controller with proportional-integral-derivative (PID) control, and Linear Quadratic Regulator (LQR) as two model-free and model-based controllers which are widely used controllers in industry. The results of the comparison show that in the various scenarios applied, MFAC has a clear superiority over the PID and LQR, and its adaptive structure gives more freedom of action in the implementation of different scenarios and the presented noise. The results are obtained using the Integral Time Absolute Error (ITAE) criteria and the mean maximum error has also been compared in a Monte Carlo analysis. For a more detailed study, the amount of control energy consumption was also compared, which showed a clear superiority of the MFAC. Also, the robustness of the controller was demonstrated by introducing uncertainty in the plant parameters and by running 100 Monte Carlo simulations with random initial conditions. Finally, despite the PID controller, the MFAC followed the desired scenarios well and compared to LQR consumed less energy. The results demonstrate that the MFAC outperformed the PID and LQR controllers in the presence of random initial conditions and noise in terms of mean maximum error $$(70.4\%)$$ ( 70.4 % ) , mean ITAE $$(91\%)$$ ( 91 % ) , and energy consumption $$(46\%)$$ ( 46 % ) .

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3