Trajectory Tracking Control of Fixed-Wing Hybrid Aerial Underwater Vehicle Subject to Wind and Wave Disturbances

Author:

Li Junping,Jin Yufei,Hu Rui,Bai Yulin,Lu Di,Zeng ZhengORCID,Lian Lian

Abstract

AbstractThe hybrid aerial underwater vehicle (HAUV) could operate in the air and underwater might provide a great convenience for aerial and underwater exploration, and the fixed-wing HAUV (FHAUV) has time, space and cost advantages in future large-scale applications, while the large difference between the aerial and underwater environments is a challenge to control, especially in the air/water transition. However, for FHAUV control, there is a lack of research on phenomena or problems caused by large changes in the air/water transition. In addition, the effects of wind, wave, other factors and conditions on motion control are not investigated. This paper presents the first control study on the above issues. The motion model of FHAUV is developed, with the effects of wind and wave disturbances. Then, this paper improves a cascade gain scheduling (CGS) PID for different media environments (air and water) and proposes a cascade state feedback (CSF) control strategy to address the convergence problem of FHAUV control caused by large speed change in the air/water transition. In the comparisons of the two control schemes in various tracking cases including trajectory slopes, reference speeds, wind and wave disturbances, CSF has a better control effect, convergence rate and robustness; the key factors and conditions of the air/water transition are investigated, the critical relations and feasible domains of the trajectory slopes and reference speeds that the FHAUV must meet to successfully exit the water and enter the air are obtained, the critical slope decreases as the reference speed increases, and the feasible domain of CSF is larger than that of CGS, revealing that CSF is superior than CGS for exiting the water.

Funder

National Natural Science Foundation of China

Shanghai Committee Science and Technology Project

Natural Science Foundation of Shanghai

Shanghai Jiao Tong University Scientific and Technological Innovation Funds

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3