Aerial Locating Method Design for Civil Aviation RFI: UAV Monitoring Platform and Ground Terminal System

Author:

Zhou Chao,Xiong RenheORCID,Zeng Hongzheng,Xiao Jun,Wang Yao,Jia Pingfa,Ye Jia,Zhao Tiantian,Hu Kun

Abstract

AbstractA key open question in the aerial locating method is ensure that parameters that identify the location of the radio frequency interference (RFI) are monitored, and to make sure that the locating algorithm is unbiased. Furthermore, the transmission of parameters to the ground for real-time analysis and display of the RFI location is important as it provides insight into the performance advantages of the aerial location method. The main contributions of the article are four points: the first is the introduction of the angle of arrival (AOA) algorithm to civil aviation RFI location, and the integration of algorithm characteristics with unmanned aerial vehicle (UAV) operations proposing an aerial monitoring method for civil aviation RFI. Simulation results show that the two-point cross-location method obtains effective information on the location parameters of the RFI. The second is to build a UAV monitoring platform, which is as light as possible to make sure the direction finding and digital transmission devices meet the airworthiness requirements, so that the UAV can complete the data acquisition task within a safety margin. Thirdly, a ground analysis system was designed to receive information on the UAV’s parameters, enabling software manipulation to ensure safe operation under non-visual conditions. In addition to this, the monitoring data is processed in real time and algorithms are used to resolve the location of interference sources and display them on a map. The fourth one is to verify the implementation of the aerial positioning method by setting up different test scenarios. Compared with portable direction-finding equipment and ground monitoring, the test results show that the UAV-based RFI monitoring method performances better in monitoring radius and positioning accuracy with a small direction-finding error, and the advantages of the ground analysis system are highly integrated and intuitive display.

Funder

Key Technologies Research and Development Program

National College Students Innovation and Entrepreneurship Training Program

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3