Effects of the Human Presence among Robots in the ARIAC 2023 Industrial Automation Competition

Author:

Buss Becker LeandroORCID,Downs Anthony,Schlenoff Craig,Albrecht Justin,Kootbally Zeid,Ferrando Angelo,Cardoso Rafael,Fisher Michael

Abstract

AbstractARIAC is a robotic simulation competition promoted by NIST annually since 2017, aiming to present competitors’ with contemporary industry problems to be solved using agile robotics. For the 2023 competition, ARIAC competitors must perform assembly and kitting tasks by controlling four autonomous ground vehicles (AGVs), one floor-based robot, and one ceiling-based (Gantry) robot in an attempt to overcome a range of agility challenges in the supplied simulated environment, itself based on the Robot Operating System (ROS 2) and Gazebo. The 2023 competition also included a “human” agility challenge, comprising a (simulated) human operator working among robots on the factory floor. This development was motivated by the fact that, while robots and automation play an increasingly significant role in modern manufacturing, there still remains a close relationship between machines and humans. They should complement each other’s strengths and cover each other’s limitations while also observing any required safety rules. For example, the ISO standard “Robots and Robotic Devices – Collaborative robots” (ISO 15066:2016) prescribes the distances required between humans and robots. Within the ARIAC simulation environment, each human operator is controlled using autonomous Belief-Desire-Intention (BDI) agents. At the same time, competitors can monitor the position of each human operator at any time by subscribing to the relevant ROS topic. In this article, we analyse the effects of this (simulated) human presence in the 2023 ARIAC competition and perform a detailed analysis of how the three different human personalities that were implemented affect the assembly tasks undertaken at the four different locations of the assembly stations. Given how the system is currently implemented, it appears that the influence of each encoded personality on the competitors is not as predictable as anticipated. We expand on why this may be a problem when addressing real collaborative spaces involving humans and industrial robots and the improvements that can be undertaken to mitigate the ensuing problems.

Funder

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3