Curvature Scale Space LiDAR Odometry And Mapping (LOAM)

Author:

Gonzalez ClayderORCID,Adams MartinORCID

Abstract

AbstractThe LiDAR Odometry and Mapping (LOAM) algorithm ranks in second place in the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI), Visual Odometry/SLAM Evaluations. It utilizes a feature extraction algorithm based on the evaluation of the curvature of points under test, to produce estimated smooth and non-smooth regions within typically laser based Point Cloud Data (PCD). This feature extractor (FE) however, does not take into account PCD spatial or detection uncertainty, which can result in the divergence of the LOAM algorithm. Therefore, this article proposes the use of the Curvature Scale Space (CSS) algorithm as a replacement for LOAM’s current feature extractor. It justifies the substitution, based on the CSS algorithm’s similar computational complexity but improved feature detection repeatability. LOAM’s current feature extractor and the proposed CSS feature extractor are tested and compared with simulated and real data, including the KITTI odometry-laser data set. Additionally, a recent deep learning based LiDAR Odometry (LO) algorithm, the Convolutional Auto-Encoder (CAE)-LO algorithm, will also be compared, using this data set, in terms of its computational speed and performance. Performance comparisons are made based on the Absolute Trajectory Error (ATE) and Cardinalized Optimal Linear Assignment (COLA) metrics. Based on these metrics, the comparisons show significant improvements of the LOAM algorithm with the CSS feature extractor compared with the benchmark versions.

Funder

ANID/PIA

ANID FONDECYT

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3