Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection

Author:

Wang ChuyaoORCID,Aouf Nabil

Abstract

AbstractAutomatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving. Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection. The proposed method comprises three key components: 1)Feature Enhancement Pyramid Module: We extend the conventional Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep network model without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation, we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous driving applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3