Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software
Reference32 articles.
1. Bellman, R.: A markovian decision process. J Appl Math Mech. 6(5), 679–684 (1957)
2. Devlin, S., Kudenko, D., Grześ, M.: An empirical study of potential-based reward shaping and advice in complex, multi-agent systems. Adv. Complex Syst. 14(2), 251–278 (2011)
3. Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P.: Reverse curriculum generation for reinforcement learning. In: Conference on robot learning, pp. 482–495. PMLR (2017)
4. Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., Levine, S.: Composable deep reinforcement learning for robotic manipulation. In: 2018 IEEE international conference on robotics and automation (ICRA), pp. 6244–6251. IEEE (2018)
5. Hu, Z., Kaifang, W., Gao, X., Zhai, Y.: A dynamic adjusting reward function method for deep reinforcement learning with adjustable parameters. Math Probl. Eng. 1–10 (2019). https://doi.org/10.1155/2019/7619483
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献