Dynamic Bandwidth Allocation for Collaborative Multi-Robot Systems Based on Task Execution Measures

Author:

Slim MalakORCID,Daher Naseem,Elhajj Imad H.

Abstract

AbstractMulti-robot systems (MRSs) is a growing field of research that focuses on the collaboration of multiple robots to achieve a common global objective. Managing these systems poses several challenges, including coordination, task allocation, and communication. Among these challenges, a major area of focus is devising an effective communication scheme that ensures robots’ cooperation and adapts to varying conditions during task execution. In this paper, we develop a novel communication management framework tailored for MRSs, specifically addressing dynamic bandwidth distribution in networked teleoperated robotic systems. The algorithm is combined with semi-autonomous formation control based on the Artificial Potential Fields (APF) algorithm, which allows each individual robot to avoid local obstacles autonomously and tries to maintain a desired formation with its neighbors, while the operator is in charge of high-level control only. Common Dynamic Bandwidth Allocation (DBA) algorithms allocate bandwidth to different units based on network conditions and requirements. On the other hand, our proposed DBA scheme dynamically distributes the available bandwidth on communication streams based on factors related to task execution and system performance. In specific, bandwidth is allocated in a way that adapts to changes occurring in the system’s environment and its internal state, including the effect of the autonomous action taken by the path planner on the MRS and the performance of the controller of each individual robot. By addressing the limitations of existing approaches through shaping the communication behavior of the MRS based on performance measures, our proposed algorithm offers a promising solution for improving the performance and efficiency of MRSs. The proposed scheme is tested through simulations on a group of six unmanned aerial vehicles (UAVs) in the Robot Operating System (ROS)-Gazebo simulation environment. The obtained results show the scheme’s capability for enhancing the robotic system’s performance while significantly reducing bandwidth consumption. Experimental testing on two mobile robots further demonstrates the effectiveness of the proposed scheme.

Funder

University Research Board

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3