AL-TUNE: A Family of Methods to Effectively Tune UAV Controllers in In-flight Conditions

Author:

Horla DariuszORCID,Giernacki WojciechORCID,Báča TomasORCID,Spurny VojtechORCID,Saska MartinORCID

Abstract

AbstractIn the paper, a family of novel real-time tuning methods for an unmanned aerial vehicle (UAV) altitude controller in in-flight conditions. The methods allow the controller’s gains to be adapted only on the basis of measurements from a basic sensory equipment and by constructing the optimization cost function in an on-line fashion with virtually no impeding computational complexity; in the case of the altitude controller as in this paper for a hexacopter, altitude measurements were used only. The methods are not dependent on the measurement level, and present the approach in a generally applicable form to tuning arbitrary controllers with low number of parameters. Real-world experimental flights, preceded by simulation tests, have shown which method should behave best in a noisy environment when e.g. wind disturbances act on a UAV while it is in autonomous flight. As the methods can potentially be extended to other control loops or controller types, making this a versatile, rapid-tuning tool. It has been shown that a well-tuned controller using the proposed AL-TUNE scheme outperforms controllers that are tuned just to stabilize the system. AL-TUNE provides a new way of using UAVs in terms of adaptivity to changing their dynamic properties and can be deployed rapidly. This enables new applications and extends the usability of fully autonomous UAVs, unlike other tuning methods, which basically require the availability of a UAV model. The core difference with respect to other research from the field is that other authors either use a model of a UAV to optimize the gains analytically or use machine learning techniques, what increases time consumption, whereas the presented methods offer a rapid way to tune controllers, in a reliable way, with deterministic time requirements.

Funder

Politechnika Poznańska

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3