Abstract
AbstractThis paper introduces a kinodynamic motion planning algorithm for Unmanned Aircraft Systems (UAS), called MP-RRT#. MP-RRT# joins the potentialities of RRT# with a strategy based on Model Predictive Control to efficiently solve motion planning problems under differential constraints. Similar to other RRT-based algorithms, MP-RRT# explores the map constructing an asymptotically optimal graph. In each iteration the graph is extended with a new vertex in the reference state of the UAS. Then, a forward simulation is performed using a Model Predictive Control strategy to evaluate the motion between two adjacent vertices, and a trajectory in the state space is computed. As a result, the MP-RRT# algorithm eventually generates a feasible trajectory for the UAS satisfying dynamic constraints. Simulation results obtained with a simulated drone controlled with the PX4 autopilot corroborate the validity of the MP-RRT# approach.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献