Ground, Ceiling and Wall Effect Evaluation of Small Quadcopters in Pressure-controlled Environments

Author:

David Du Mutel de Pierrepont Franze IrisORCID,Parin Riccardo,Capello Elisa,Rutherford Matthew J.,Valavanis Kimon P.

Abstract

AbstractMulticopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the open spaces in obstacle-free environments commonly flown by fixed-wing unmanned aerial vehicles, multicopters frequently fly close to surfaces and must take into account the airflow variations caused by airflow rebound. Such disturbances must be identified in order to design algorithms capable of compensating them. The evaluation of ground, ceiling and wall effects using two different test stands is proposed in this work. Different propellers and sensors have been considered for testing. The first test setup used was placed inside terraXcube’s large climatic chamber allowing a precise control of temperature and pressure of around 20°C and 1000 hPa, respectively. The second test setup is located at the University of Denver (DU) Unmanned Systems Research Institute (DU$$^2$$ 2 SRI) laboratory with a stable pressure of around 800 hPa. Two different fixed 6 degrees of freedom force-torque sensors have been used for the experiments, allowing to sample forces and moments in three orthogonal axes. The tests simulate a hovering situation of a quadcopter at different distances to either the ground, the ceiling or a wall. The influence of the propeller size, rotation speed, pressure and temperature have also been considered and used for later dimensionless coefficient comparison. A thorough analysis of the measurement uncertainty is also included based on experimental evaluations and manufacturer information. Experimental data collected in these tests can be used for the definition of a mathematical model in which the effect of the proximity to the different surfaces is evaluated.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3