Comparative Analysis of Deep Neural Networks for the Detection and Decoding of Data Matrix Landmarks in Cluttered Indoor Environments

Author:

Almeida TiagoORCID,Santos Vitor,Mozos Oscar Martinez,Lourenço Bernardo

Abstract

AbstractData Matrix patterns imprinted as passive visual landmarks have shown to be a valid solution for the self-localization of Automated Guided Vehicles (AGVs) in shop floors. However, existing Data Matrix decoding applications take a long time to detect and segment the markers in the input image. Therefore, this paper proposes a pipeline where the detector is based on a real-time Deep Learning network and the decoder is a conventional method, i.e. the implementation in libdmtx. To do so, several types of Deep Neural Networks (DNNs) for object detection were studied, trained, compared, and assessed. The architectures range from region proposals (Faster R-CNN) to single-shot methods (SSD and YOLO). This study focused on performance and processing time to select the best Deep Learning (DL) model to carry out the detection of the visual markers. Additionally, a specific data set was created to evaluate those networks. This test set includes demanding situations, such as high illumination gradients in the same scene and Data Matrix markers positioned in skewed planes. The proposed approach outperformed the best known and most used Data Matrix decoder available in libraries like libdmtx.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3