Ornithopter Trajectory Optimization with Neural Networks and Random Forest

Author:

Pérez-Cutiño M. A.ORCID,Rodríguez F.,Pascual L. D.,Díaz-Báñez J. M.

Abstract

AbstractTrajectory optimization has recently been addressed to compute energy-efficient routes for ornithopter navigation, but its online application remains a challenge. To overcome the high computation time of traditional approaches, this paper proposes algorithms that recursively generate trajectories based on the output of neural networks and random forest. To this end, we create a large data set composed by energy-efficient trajectories obtained by running a competitive planner. To the best of our knowledge our proposed data set is the first one with a high number of pseudo-optimal paths for ornithopter trajectory optimization. We compare the performance of three methods to compute low-cost trajectories: two classification approaches to learn maneuvers and an alternative regression method that predicts new states. The algorithms are tested in several scenarios, including the landing case. The effectiveness and efficiency of the proposed algorithms are demonstrated through simulation, which show that the machine learning techniques can be used to compute the flight path of the ornithopter in real time, even under uncertainties such as wrong sensor readings or re-positioning of the target. Random Forest obtains the higher performance with more than 99% and 97% of accuracy in a landing and a mid-range scenario, respectively.

Funder

Universidad de Sevilla

Horizon 2020

Ministerio de Economía y Competitividad

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3