Distinct redox state regulation in the seedling performance of Norway maple and sycamore

Author:

Alipour ShirinORCID,Wojciechowska NataliaORCID,Bujarska-Borkowska BarbaraORCID,Kalemba Ewa MarzenaORCID

Abstract

AbstractNorway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3