Light and nutrient limitations for tree growth on young versus old soils in a Bornean tropical montane forest

Author:

Aiba Shin-ichiroORCID,Kitayama Kanehiro

Abstract

AbstractWe examined forest and tree responses to decreasing nutrient availability with soil aging in a species-rich tropical montane rain forest on Mount Kinabalu, Borneo. Community composition and structure and tree growth rates were compared between two 1 ha plots on nutrient-rich young soil versus nutrient-deficient old soil. Myrtaceae and Fagaceae dominated both plots. With soil aging, the dominance of Lauraceae, stem density, basal area and aboveground biomass decreased, and the forest understory became brighter. Some dominant taxa on the old soil (Podocarpaceae and the genus Tristaniopsis in Myrtaceae) were virtually absent on the young soil; this was attributed to light limitation in the understory. Growth rates of understory trees were lower on the young soil, whereas those of canopy trees were lower on the old soil. This suggested that the growth of understory trees was limited by light on the young soil, whereas that of canopy trees was limited by nutrients on the old soil. Of the eight species that were abundant in both plots, the dominance of five species was considerably lower on the old soil, four of which also exhibited decreased maximum sizes and lower growth rates. The remaining three species showed similar dominance across plots without a decline in growth rates, although they exhibited decreased maximum sizes on the old soil. These analyses demonstrated divergent responses of species to the soil-age gradient. We suggest that the differential responses of species to decreasing nutrient availability with a concomitant increase in understory light levels explain floristic turnover with soil aging.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3