Consistent scaling of whole-shoot respiration between Moso bamboo (Phyllostachys pubescens) and trees

Author:

Wang MofeiORCID,Mori ShigetaORCID,Kurosawa YokoORCID,Ferrio Juan PedroORCID,Yamaji KeikoORCID,Koyama KoheiORCID

Abstract

AbstractBoth Moso bamboo (Phyllostachys pubescens) and tree forests have a large biomass; they are considered to play an important role in ecosystem carbon budgets. The scaling relationship between individual whole-shoot (i.e., aboveground parts) respiration and whole-shoot mass provides a clue for comparing the carbon budgets of Moso bamboo and tree forests. However, nobody has empirically demonstrated whether there is a difference between these forest types in the whole-shoot scaling relationship. We developed whole-shoot chambers and measured the shoot respiration of 58 individual mature bamboo shoots from the smallest to the largest in a Moso bamboo forest, and then compared them with that of 254 tree shoots previously measured. For 30 bamboo shoots, we measured the respiration rate of leaves, branches, and culms. We found that the scaling exponent of whole-shoot respiration of bamboo fitted by a simple power function on a log–log scale was 0.843 (95 % CI 0.797–0.885), which was consistent with that of trees, 0.826 (95 % CI 0.799–0.851), but higher than 3/4, the value typifying the Kleiber’s rule. The respiration rates of leaves, branches, and culms at the whole-shoot level were proportional to their mass, revealing a constant mean mass-specific respiration of 1.19, 0.224, and 0.0978 µmol CO2 kg− 1 s− 1, respectively. These constant values suggest common traits of organs among physiologically integrated ramets within a genet. Additionally, the larger the shoots, the smaller the allocation of organ mass to the metabolically active leaves, and the larger the allocation to the metabolically inactive culms. Therefore, these shifts in shoot-mass partitioning to leaves and culms caused a negative metabolic scaling of Moso bamboo shoots. The observed convergent metabolic scaling of Moso bamboo and trees may facilitate comparisons of the ecosystem carbon budgets of Moso bamboo and tree forests.

Funder

Japan Society for the Promotion of Science

Gobierno de Aragón

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3