Evaluating the precise grapevine water stress detection using unmanned aerial vehicles and evapotranspiration-based metrics

Author:

Burchard-Levine V.,Borra-Serrano I.,Peña J. M.,Kustas W. P.,Guerra J. G.,Dorado J.,Mesías-Ruiz G.,Herrezuelo M.,Mary B.,McKee L. M.,de Castro A. I.,Sanchez-Élez S.,Nieto H.

Abstract

AbstractPrecise irrigation management requires accurate knowledge of crop water demand to adequately optimize water use efficiency, especially relevant in arid and semi-arid regions. While unoccupied aerial vehicles (UAV) have shown great promise to improve the water management for crops such as vineyards, there still remains large uncertainties to accurately quantify vegetation water requirements, especially through physically-based methods. Notably, thermal remote sensing has been shown to be a promising tool to evaluate water stress at different scales, most commonly through the Crop Water Stress Index (CWSI). This work aimed to evaluate the potential of a UAV payload to estimate evapotranspiration (ET) and alternative ET-based crop water stress indices to better monitor and detect irrigation requirements in vineyards. As a case study, three irrigation treatments within a vineyard were implemented to impose weekly crop coefficient (Kc) of 0.2 (extreme deficit irrigation), 0.4 (typical deficit irrigation) and 0.8 (over-irrigated) of reference ET. Both the original Priestley-Taylor initialized two-source energy balance model (TSEB-PT) and the dual temperature TSEB (TSEB-2T), which takes advantage of high-resolution imagery to discriminate canopy and soil temperatures, were implemented to estimate ET. In a first step, both ET models were evaluated at the footprint level using an eddy covariance (EC) tower, with modelled fluxes comparing well against the EC measurements. Secondly, in-situ physiological measurements at vine level, such as stomatal conductance (gst), leaf (Ψleaf) and stem (Ψstem) water potential, were collected simultaneously to UAV overpasses as plant proxies of water stress. Different variants of the CWSI and alternative metrics that take advantage of the partitioned ET from TSEB, such as Crop Transpiration Stress Index (CTSI) and the Crop Stomatal Stress Index (CSSI), were also evaluated to test their statistical relationship against these in-situ physiological indicators using the Spearman correlation coefficient (ρ). Both TSEB-PT and TSEB-2T CWSI related similarly to in-situ measurements (Ψleaf: ρ ~ 0.4; Ψstem: ρ ~ 0.55). On the other hand, stress indicators using canopy fluxes (i.e. CTSI and CSSI) were much more effective when using TSEB-2 T (Ψleaf: ρ = 0.45; Ψstem: ρ = 0.62) compared to TSEB-PT (Ψleaf: ρ = 0.18; Ψstem: ρ = 0.49), revealing important differences in the ET partitioning between model variants. These results demonstrate the utility of physically-based models to estimate ET and partitioned canopy fluxes, which can enhance the detection of vine water stress and quantitatively assess vine water demand to better manage irrigation practices.

Funder

Spanish Ministry of Science and Innovation & European Union NextGenerationEU/PRTR

Spanish Ministry of Education and Professional Training

Spanish Ministry of Science and Innovation and PRIMA EU

Instituto de Ciencias Agrarias

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3