Energy efficiency assessment in collective irrigation systems using water and energy balances: methodology and application

Author:

Loureiro Dália,Beceiro Paula,Fernandes Eriksson,Alegre Helena,Covas Dídia

Abstract

AbstractMany collective irrigation systems have been operating for decades, facing high degradation of existing infrastructures and huge water-energy efficiency problems. Predominantly composed of open canals, they have been partially or entirely converted into pressurised pipe systems, implying a considerable increase in energy consumption and operation and maintenance costs. Simple, easy-to-use, and comprehensive approaches for energy efficiency assessment in collective irrigation systems are needed for diagnosis and assisting decision-making on implementing adequate improvement measures. This research proposes and demonstrates an innovative approach based on the water and energy balances and performance indicators to assess the effect of water losses, network layout and operation, energy recovery, and equipment on energy efficiency. A novel methodology for energy balance calculation is proposed for open canal, pressurised and combined systems. The application to a real-life open canal system and network areas allowed the identification of efficiency problems mainly due to water losses in canals, followed by the dissipated energy in friction losses. Less critical are pumping and manoeuvring equipment inefficiencies. Also, a considerable excess of gravity energy is recovered in hydropower plants. In raising pipe systems, in which shaft input energy predominates and costs for pumping play a key role, surplus and dissipated energy in friction losses are the most relevant issues. Significant energy is lost in the water conveyance and distribution in both systems. Consequently, the potential to improve energy efficiency through water loss management, network layout, and operation improvement, besides pumping and manoeuvring equipment replacement, is considerable.

Funder

PDR 2020

Fundação para a Ciência e Tecnologia

Laboratório Nacional de Engenharia Civil – LNEC

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Water Science and Technology,Agronomy and Crop Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3