How to Distinguish Feigned from Genuine Depressive Symptoms: Response Patterns and Content Analysis of the SIMS Affective Disorder Scale

Author:

Ricci EleonoraORCID,Colasanti MarcoORCID,Monaro MerylinORCID,Mazza CristinaORCID,Cardinale AlessandraORCID,Bosco FrancescaORCID,Mazzoni GiulianaORCID,Arnaud Clelia RossiORCID,Ferracuti StefanoORCID,Di Domenico AlbertoORCID,Roma PaoloORCID

Abstract

AbstractIn civil and forensic evaluations of psychological damage, depression is one of the most commonly identified disorders, and also one of the most frequently feigned. Thus, practitioners are often confronted with situations in which they must assess whether the symptomatology presented by a patient is genuine or being feigned for secondary gains. While effective, traditional feigning detection instruments generate a high number of false positives—especially among patients presenting with severe symptomatology. The current study aimed at equipping forensic specialists with an empirical decision-making strategy for evaluating patient credibility on the basis of test results. In total, 315 participants were administered the Beck Depression Inventory-II (BDI-II) and SIMS Affective Disorders (SIMS AF) scales. Response patterns across the experimental groups (i.e., Honest, Simulators, Honest with Depressive Symptoms) were analyzed. A machine learning decision tree model (i.e., J48), considering performance on both measures, was built to effectively distinguish Honest with Depressive Symptoms subjects from Simulators. A forward logistic regression model was run to determine which SIMS AF items best identified Simulators, in comparison with Honest with Depressive Symptoms subjects. The results showed that the combination of feigning detection instruments and clinical tests generated incremental specificity, thereby reducing the risk of misclassifying Honest with Depressive Symptoms subjects as feigners. Furthermore, the performance analysis of SIMS AF items showed that Simulators were more likely to endorse three specific items. Thus, computational models may provide effective support to forensic practitioners, who must make complex decisions on the basis of multiple elements. Future research should revise the content of SIMS AF items to achieve better accuracy in the discrimination between feigners and honest subjects with depressive symptoms.

Funder

Università degli Studi G. D'Annunzio Chieti Pescara

Publisher

Springer Science and Business Media LLC

Subject

Law,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3