Abstract
AbstractSalicylic acid (SA) is a phytohormone required for plant growth and defense signaling. There are two major SA biosynthesis pathways in plants: the isochorismate synthase (ICS) pathway and the phenylalanine ammonia-lyase (PAL) pathway. It has been demonstrated in several plant species, including the model plant Arabidopsis, that SA is derived predominantly from the ICS pathway. Here, we employed the CRISPR/Cas9 system to generate ICS knockout mutants in rice (Oryza sativa L.). The Osics mutants display severe growth defects, and are completely devoid of phylloquinone, an isochorismate-derived product. The growth defects of Osics can be rescued through exogenous application of 1,4-dihydroxy-2-naphthoic acid (NA), a precursor of phylloquinone. Remarkably, the basal SA levels are not altered in the Osics mutants. Our findings support a role of OsICS in the biosynthesis of phylloquinone, and imply that SA biosynthesis in rice may occur through an alternative route other than the ICS pathway.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Open Project of State Key Laboratory of Plant Genomics
Biological Breeding Engineering of Shanxi Agricultural University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献