mTOR pathway mediates endoplasmic reticulum stress-induced CD4+ T cell apoptosis in septic mice

Author:

Bai Guangxu,Wang Hao,Cui Na

Abstract

AbstractEndoplasmic reticulum stress (ERS) has been well documented to participate in the pathophysiological processes of apoptosis in many diseases. Inhibition of ERS ameliorates pathological organ injury. However, the upstream signaling pathways and molecular regulatory mechanisms of which are still unknown. mTOR, an evolutionarily conserved protein kinase, is a key regulator of apoptosis. Hence, in this study, a classical cecal ligation and puncture (CLP) sepsis model was constructed by using the T cell-specific knockout mTOR and TSC1 (Tuberous Sclerosis Complex, the inhibitor of mTOR signaling pathway) mice to explore the underlying signaling pathway and molecular mechanism of host immune imbalance caused by apoptosis in sepsis. We found that mTOR may modulate septic T cell apoptosis by regulating Akt–IRE1–JNK pathway. To further clarify the possible mechanism, the specific inhibitors of PI3K-Akt and IRE1–JNK were used to intervene in mice before/after CLP, respectively. By analyzing the proteins of mTOR-ERS signaling pathway and the expression of apoptosis-related proteins and genes, we found that mTOR mediated the ER stress induced CD4+ T cell apoptosis in Septic mice by negatively regulating the Akt–IRE1–JNK-Caspase 3 signaling cascades. These results indicate that mTOR–Akt–IRE1α–JNK signaling pathway mediated the Endoplasmic reticulum stress induced CD4+ T cell apoptosis in Septic mice.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Tibet Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Biochemistry (medical),Cell Biology,Clinical Biochemistry,Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3