Detecting large-scale underwater cracks based on remote operated vehicle and graph convolutional neural network

Author:

Cao Wenxuan,Li Junjie

Abstract

AbstractIt is of great significance to quickly detect underwater cracks as they can seriously threaten the safety of underwater structures. Research to date has mainly focused on the detection of above-water-level cracks and hasn’t considered the large scale cracks. In this paper, a large-scale underwater crack examination method is proposed based on image stitching and segmentation. In addition, a purpose of this paper is to design a new convolution method to segment underwater images. An improved As-Projective-As-Possible (APAP) algorithm was designed to extract and stitch keyframes from videos. The graph convolutional neural network (GCN) was used to segment the stitched image. The GCN’s m-IOU is 24.02% higher than Fully convolutional networks (FCN), proving that GCN has great potential of application in image segmentation and underwater image processing. The result shows that the improved APAP algorithm and GCN can adapt to complex underwater environments and perform well in different study areas.

Publisher

Springer Science and Business Media LLC

Subject

Architecture,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised learning method for underwater concrete crack image enhancement and augmentation based on cross domain translation strategy;Engineering Applications of Artificial Intelligence;2024-10

2. Application of computer vision techniques to damage detection in underwater concrete structures;Alexandria Engineering Journal;2024-10

3. Automated detection of underwater cracks based on fusion of optical and texture information;Engineering Structures;2024-09

4. Underwater dam crack image generation based on unsupervised image-to-image translation;Automation in Construction;2024-07

5. Pipeline Leak Detection System Using Machine Learning;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3