Abstract
AbstractIt is of great significance to quickly detect underwater cracks as they can seriously threaten the safety of underwater structures. Research to date has mainly focused on the detection of above-water-level cracks and hasn’t considered the large scale cracks. In this paper, a large-scale underwater crack examination method is proposed based on image stitching and segmentation. In addition, a purpose of this paper is to design a new convolution method to segment underwater images. An improved As-Projective-As-Possible (APAP) algorithm was designed to extract and stitch keyframes from videos. The graph convolutional neural network (GCN) was used to segment the stitched image. The GCN’s m-IOU is 24.02% higher than Fully convolutional networks (FCN), proving that GCN has great potential of application in image segmentation and underwater image processing. The result shows that the improved APAP algorithm and GCN can adapt to complex underwater environments and perform well in different study areas.
Publisher
Springer Science and Business Media LLC
Subject
Architecture,Civil and Structural Engineering
Reference64 articles.
1. Li W, Chen G, Ge J, Yin X, Li K. High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks. NDT & E International, 2016, 79: 123–131
2. Fang H, Duan M. Off-shore Operation Facilities: Equipment and Procedures. Boston: Gulf Professional Publishing, 2014, 537–686
3. Sun J, Xue C, Yu Y. Research on feature-based underwater image mosaic technology. Ship Electronic Engineering, 2017, 37(6): 118–121
4. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
5. Zhang Y M, Yang X Q, Wang X Y, Zhuang X Y. A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theoretical and Applied Fracture Mechanics, 2021, 113: 102930
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献