Thermal response of steel framing members in open car park fires

Author:

Yan Xia,Charlier Marion,Gernay Thomas

Abstract

AbstractFor open car park structures, adopting a performance-based structural fire design is often justified and allowed because the fire does not reach flashover. However, this design approach requires an accurate assessment of temperatures in structural members exposed to car fires. This paper describes a numerical study on the thermal exposure on steel framing members in open car park fires. Steel temperatures are computed by the coupling of computational fluid dynamics and finite element modeling, and by analytical models from the Eurocodes. In addition, the influence of galvanization on the steel temperature evolution is assessed. Results show that temperatures in unprotected beams and columns are influenced by the section geometry, car fire scenario, modeling approach, and use of galvanization. Galvanization slightly delays and reduces peak temperature. Regarding the different models, CFD-FEM (CFD: computational fluid dynamics, FEM: finite-element method) coupled models predict lower temperatures than the Hasemi model, because the latter conservatively assumes that the fire flame continuously touches the ceiling. Further, the Hasemi model cannot account for the effect of reduced emissivity from galvanization on the absorbed heat flux. Detailed temperature distributions obtained in the steel members can be used to complete efficient structural fire designs based on the member sections, structure layout, and use of galvanization.

Publisher

Springer Science and Business Media LLC

Subject

Architecture,Civil and Structural Engineering

Reference43 articles.

1. Zhao B, Roosefid M. Guide for Verification of the Fire Behavior of Largely Ventilated Car Parks with Metal Superstructure. CTICM document (SRI-11/110h-MR-BZ/NB), 2014 (in French)

2. Mangs J, Keski-Rahkonen O. Characterization of the fire behaviour of a burning passenger car. Part I: Car fire experiments. Fire Safety Journal, 1994, 23(1): 17–35

3. Macneil D D, Lougheed G, Lam C, Carbonneau G, Kroeker R, Edwards D, Tompkins J, Lalime G. Electric vehicle fire testing. In: 8th EVS-GTR Meeting. Washington, D.C.: National Research Council Canada, 2015

4. Zhao B, Kruppa J. Structural behaviour of an open car park under real fire scenarios. Fire and Materials, 2004, 28(24): 269–280

5. Joyeux D. Natural Fires in Closed Car Parks—Car Fire Tests. INC-96/294d-DJ/NB, 1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3