Finite element modeling of thermo-active diaphragm walls

Author:

Rui Yi,Yin Mei

Abstract

AbstractThere are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

Publisher

Springer Science and Business Media LLC

Subject

Architecture,Civil and Structural Engineering

Reference24 articles.

1. Brandl H. Energy foundations and other thermo-active ground structures. Geotechnique, 2006, 56(2): 81–122

2. Suckling T P, Smith P. Environmentally friendly geothermal piles at Keble College. In: Proceedings of the 9th International Conference on Piling and Deep Foundations. Nice: Deep Foundations Institute, 2002, 1016: 8–15

3. Laloui L, Di Donna A. Understanding the behaviour of energy geostructures. Proceedings of the Institution of Civil Engineers-Civil Engineering, 2011, 164(4): 184–191

4. Amis T, Robinson C, Wong S. Integrating geothermal loops into the diaphragm walls of the Knightsbridge Palace Hotel project. In: EMAP-Basements and Underground Structures. 2010

5. Bourne-Webb P J, Amatya B, Soga K, Amis T, Davidson C, Payne P. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique, 2009, 59(3): 237–248

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3