Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components

Author:

Bolandi Hamed,Li Xuyang,Salem Talal,Boddeti Vishnu Naresh,Lajnef Nizar

Abstract

AbstractFinite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures. Conventional methods, such as FEA, provide high fidelity results but require the solution of large linear systems that can be computationally intensive. Instead, Deep Learning (DL) techniques can generate results significantly faster than conventional run-time analysis. This can prove extremely valuable in real-time structural assessment applications. Our proposed method uses deep neural networks in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions. The CNN was designed and trained to use the geometry, boundary conditions, and load as input to predict the stress contours. The proposed technique’s performance was compared to finite-element simulations using a partial differential equation (PDE) solver. The trained DL model can predict the stress distributions with a mean absolute error of 0.9% and an absolute peak error of 0.46% for the von Mises stress distribution. This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications.

Publisher

Springer Science and Business Media LLC

Subject

Architecture,Civil and Structural Engineering

Reference61 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3