Stable expression and control parameters in the numerical simulation of unsaturated flow

Author:

Zhang Zhiyuan,Li Xu,Wu Yongkang,Li Xiaokang

Abstract

AbstractThe Richards’ equation describes the flow phenomenon in unsaturated porous media and is essential to hydrology and environmental science. This study evaluated the numerical stability of two different forms of the Richards’ equation. Sensitivity analyses were performed to investigate the control parameters of the equation. The results show that the h-form Richards’ equation has better applicability for calculating variable saturation flows than the θ-form Richards’ equation. For the h-form Richards’ equation, the hydraulic conductivity of the soil in the low-suction range and the specific moisture capacity in the high-suction range primarily influenced the solution. In addition, sensitivity analyses indicated that the saturated hydraulic conductivity, initial condition, and air-entry pressure have a higher sensitivity to the simulation results than the saturated water content, rainfall intensity, and decline rate of hydraulic conductivity. Moreover, their correctness needs to be guaranteed first in numerical simulations. The research findings can provide a helpful reference for improving the reliability of numerical simulations of unsaturated flows.

Publisher

Springer Science and Business Media LLC

Subject

Architecture,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3