Cytomegalovirus immune evasion sets the functional avidity threshold for protection by CD8 T cells

Author:

Hamdan Sara,Reddehase Matthias J.,Holtappels RafaelaORCID

Abstract

AbstractConflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in “immune evasion” by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term “immune evasion” is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.

Funder

Deutsche Forschungsgemeinschaft

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Immunology,General Medicine,Immunology and Allergy

Reference54 articles.

1. Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Academic Press, Norfolk, pp 1–22

2. Redwood AJ, Shellam GR, Smith LM (2013) Molecular evolution of murine cytomegalovirus genomes. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Academic Press, Norfolk, pp 23–37

3. Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86:435–440. https://doi.org/10.3181/00379727-86-21123

4. Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430. https://doi.org/10.3181/00379727-92-22498

5. Ostermann E, Pawletko K, Indenbirken D, Schumacher U, Brune W (2015) Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants. Med Microbiol Immunol 204:461–469. https://doi.org/10.1007/s00430-015-0400-7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3