Abstract
AbstractSeveral tools have been developed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genotyping based on either whole genome or spike sequencing. We aimed to highlight the molecular epidemiological landscape of SARS-CoV-2 in Egypt since the start of the pandemic, to describe discrepancies between the 3 typing tools: Global Initiative on Sharing Avian Influenza Data (GISAID), Nextclade, and Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN) and to assess the fitness of spike and nucleocapsid regions for lineage assignment compared to the whole genome. A total of 3935 sequences isolated from Egypt (March 2020–2023) were retrieved from the GISAID database. A subset of data (n = 1212) with high coverage whole genome was used for tool discrimination and agreement analyses. Among 1212 sequences, the highest discriminatory power was 0.895 for PANGOLIN, followed by GISAID (0.872) and Nextclade (0.866). There was a statistically significant difference (p = 0.0418) between lineages assigned via spike (30%) and nucleocapsid (46%) compared to their whole genome-assigned lineages. The first 3 pandemic waves were dominated by B.1, followed by C.36 and then C.36.3, while the fourth to sixth waves were dominated by the B.1.617.2, BA, and BA.5.2 lineages, respectively. Current shift in lineage typing to recombinant forms. The 3 typing tools showed comparable discrimination among SARS-CoV-2 lineages. The nucleocapsid region could be used for lineage assignment.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Immunology,General Medicine,Immunology and Allergy